Mid-Infrared Pulsed Laser Lithotripsy with a Tunable Laser Using Difference-Frequency Generation
نویسندگان
چکیده
A novel technique of lithotripsy was investigated with a mid-infrared tunable pulsed laser using difference-frequency generation (DFG). Human gallstone samples obtained from 24 patients were analyzed with their infrared absorption spectra. It was found that the principal components of the gallstones were different for the different patients and that the gallstone samples used in this research could be classified into four groups, i.e., mixed stones, calcium bilirubinate stones, cholesterol stones, and calcium carbonate stones. In addition, some gallstone samples had different compositions within the single stone. The mid-infrared laser tunable within a wavelength range of 5.5 10 μm was irradiated to the cholesterol stones at two different wavelengths of 6.83 and 6.03 μm, where the cholesterol stones had relatively strong and weak absorption peaks, respectively. As the result, the cholesterol stones were more efficiently ablated at the wavelength of 6.83 μm with the strong absorption peak. Therefore, it is suggested that the gallstones could be efficiently ablated by tuning the wavelength of the laser to the strong absorption peak of the gallstones. The higher efficiency of the ablation using the characteristic absorption peaks should lead to the safer treatment without damage to the surrounding normal tissues. In order to identify the composition of the gallstones in the patients, endoscopic and spectroscopic diagnosis using the DFG laser and an optical fiber probe made with two hollow optical fibers and a diamond attenuation total reflection prism should be useful. The absorption spectrum of the gallstones in the patients could be measured by measuring the energy of the DFG laser transmitted through the optical fiber probe and by scanning the wavelength of the DFG laser.
منابع مشابه
Tuning extension of a Difference-Frequency generation up to 100 nm using V-shaped external-cavity for the pump laser
In this research, tunability of a commercial diode laser has extended to about more than ± 11 nm using a V-shaped external-cavity fabricated around the laser. Although under normal condition it can be tuned up to about ± 4 nm just by changing its temperature and injection current. Such modified diode laser has then used in a difference-frequency generation (DFG) experimental setup as pump sourc...
متن کاملNanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
Photothermal induced resonance (PTIR) is a new technique which combines the chemical specificity of infrared (IR) spectroscopy with the lateral resolution of atomic force microscopy (AFM). PTIR requires a pulsed tunable laser for sample excitation and an AFM tip to measure the sample expansion induced by light absorption. The limited tunability of commonly available laser sources constrains the...
متن کاملWidely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays
Articles you may be interested in InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers Appl. Terahertz sources based on intracavity frequency mixing in mid-infrared quantum cascade lasers with passive nonlinear sections Appl. Surface-emitting tera...
متن کاملMid-infrared difference-frequency generation in periodically poled KTiOAsO(4) and application to gas sensing.
Tunable mid-infrared radiation (3.45-3.75 microm) with a power level of 0.14 microW is generated by quasi-phase-matched difference-frequency mixing of a Nd:YAG laser and a tunable-diode laser (near 1.5 microm) in multigrating periodically poled KTiOAsO(4) . The wavelength and temperature bandwidths are approximately 65 nm cm and approximately 62 degrees C, respectively. The temperature-tuning s...
متن کاملTunable Far Infrared Laser Spectroscopy
using C02 laser difference generation in metal-insulator-metal diodes either from the difference between a fixed frequency C02 laser and a tunable waveguide laser, or from the difference between two fixed frequency C02 lasers plus microwave sidebands. is being used to make highly accurate FIR frequency measurements of stable species to serve as frequency and wavelength calibration standards; to...
متن کامل